
Accelerating Gate Sizing using GPU

Yi-Hua Chung1, Nahmsuk Oh2,
Malleswara Gupta Balabhadra Naga Venkata2, Aditya Shiledar2, Sudipto

Kundu2, Vishal Khandelwal2, and Tsung-Wei Huang1

1 University of Wisconsin-Madison, Madison, WI, USA
{yihua.chung, tsung-wei.huang}@wisc.edu

2 Synopsys Inc, Sunnyvale, CA, USA
{nahmsuk, mgupta, adityas, skundu, vishalk}@synopsys.com

Abstract. Gate sizing is important in VLSI design to optimize perfor-
mance and meet timing constraints. Multi-core CPU-based approaches
have been widely used to speed up the gate sizing algorithm, but their
scalability is typically limited to 8–16 threads. To address this limitation,
we propose a GPU algorithm to accelerate a time-consuming routine
of gate sizing, namely the library cell (libcell) selection process, in an
industrial-standard sizer. By leveraging both block- and warp-level par-
allelism, our algorithm can greatly accelerate the libcell selection time.
Experimental results show that our GPU implementations achieve up to
38.13× speedup over a 16-core CPU baseline, while warp-level sizing can
further achieve additional 4.77% improvement over block-level sizing.

Keywords: Gate sizing, GPU parallel, Electronic Design Automation

1 Introduction

Gate sizing is a fundamental optimization step in VLSI design that directly
impacts circuit performance, power consumption, and area [1, 2, 6]. It involves
selecting the most appropriate standard cell size for each gate in a design to
achieve optimal trade-offs between timing, power, and area constraints. Proper
gate sizing helps ensure that critical timing paths meet setup and hold require-
ments while minimizing power overhead.

Given a set of independent standard cells, each with associated input and
output pins, the goal of gate sizing is to select the optimal library cell (libcell)
for each gate to minimize timing violations and meet design constraints [3, 4].
For example, as shown in Figure 1a, we assign the libcell for Gate 3 from size
X1 (cell ANDX1) to size X2 (cell ANDX2) to minimize the overall timing delay.

As the circuit complexity continues to grow, solving a gate-sizing problem
can be very time-consuming. To mitigate the runtime challenge, industrial sizers
have leveraged CPU parallelism to speed up various steps in the gate-sizing
algorithm [6, 8, 9]. In particular, the libcell selection process has been widely
studied, as it exhibits a high degree of parallelism by selecting an optimal libcell
for each gate independently [1, 6, 8, 9]. Despite performance improvement, the

2 Y.-C. et al.

Gate 1

Gate 2

Gate 3
ANDX1

Test the delay
of Gate 4

Resize Gate 3 from
ANDX1 to ANDX2

Gate 4
Gate 3
ANDX2

: Displaced gate
 Pin connection

(a)

1 2 4 8 16 32 64128

150

300

450

600

#CPU cores

R
un

tim
e

(s
ec

)

#CPU cores vs Runtime (sec)

(b)

Fig. 1: (a) An example circuit illustrating the gate sizing optimization. Gate 3
acts as a driver, receiving inputs from Gate 1 and Gate 2 and driving the output
to Gate 4. (b) Runtime performance of the CPU baseline with different numbers
of CPU cores for processing 4090K driver pins, showing improved speedup with
increasing cores, but saturation occurs beyond 64 cores.

scalability of CPU-parallel approaches is largely limited to 16 threads [9], as
shown in Figure 1b. Compared to CPUs, modern GPUs provide a larger number
of threads, enabling much higher parallel processing power [7]. This advantage
inspires us to leverage GPU parallelism to accelerate the libcell selection process
in gate sizing.

In this paper, we focus on accelerating the libcell selection routine from an
industrial-standard gate sizer, which is originally implemented on multi-core
CPUs. We collaborate with the vendor to directly integrate our GPU algorithm
into the tool’s environment. The libcell selection routine is executed within the
inner loops of multiple steps in the sizer algorithm and accounts for a significant
portion of the overall runtime. Due to intellectual property of the industrial tool,
we cannot disclose other details of the algorithm but focus on our GPU kernel
design.

2 ALGORITHM

We introduce two GPU kernels to accelerate the libcell selection process of gate-
sizing: (1) block-level sizing and (2) warp-level sizing. These two approaches
are designed to accommodate a wide range of GPU architectures while max-
imizing runtime efficiency. Block-level sizing targets GPUs without advanced
warp-level primitives, focusing on distributing the workload at the thread-block
level. Warp-level sizing targets GPUs that support warp-level primitives [5] to
further achieve fine-grained synchronization and efficient communication during
the libcell selection process.

2.1 Block-level Sizing

To accelerate the libcell selection process on GPU, we develop an efficient block-
level sizing algorithm. Block-level sizing algorithm consists of two GPU kernels:

Accelerating Gate Sizing using GPU 3

update_delay and select_best_libcell. We use the update_delay kernel to com-
pute the delay of all libcells for each driver pin and select_best_libcell kernel
to select the libcell with the smallest delay for each driver pin, where a driver pin
is the output pin of a gate that connects to its downstream gates. The details
of update_delay and select_best_libcell kernels are shown in Algorithm 1 and
Algorithm 2.

As shown in Algorithm 1, the update_delay kernel calculates the delays for
all libcells of driver pins in parallel by assigning each libcell to a separate thread
(line 2 and line 4). All libcells of driver pins are stored in a 1D array, lib-
cells_of_driver_pins, to ensure a coalesced memory access (line 4). After com-
puting the delays using the compute_delay function, the results are stored in the
output array delay (line 5). Next, in the select_best_libcell kernel, as shown
in Algorithm 2, each thread processes the computed delays for its assigned driver
pin, with all driver pins stored in the driver_pins array (line 2). Each thread
identifies the libcell with the smallest delay and records its index as idx (line 4).
Finally, the selected libcell at index idx is stored in the best_libcell array as the
final selection (line 5).

Algorithm 1 update_delay
1: /* One thread handles one libcell of a driver pin */
2: #blocks = ⌈libcells_of_driver_pins.length() / 1024⌉; #threads = 1024
3: parallel for each thread tid {
4: libcell = libcells_of_driver_pins[tid]
5: delay [tid] = compute_delay(driver_pins, libcell)
6: }

Algorithm 2 select_best_libcell
1: /* One thread performs a reduction of all delays of a driver pin */
2: #blocks = ⌈driver_pins.length() / 1024⌉; #threads = 1024
3: parallel for each thread tid {
4: idx = argmini{delay [i] | i ∈ driver_pins[tid]}
5: best_libcell [tid] = the libcell at index idx within driver_pins[tid]
6: }

2.2 Warp-level Sizing

To further accelerate the process of reduction on GPU, we develop an effi-
cient warp-level sizing algorithm, where each warp consists of 32 threads that
execute instructions simultaneously. This algorithm consists of two GPU ker-
nels: update_delay and warp_select_best_libcell. After using update_delay

4 Y.-C. et al.

kernel to get the computed delays, we use the warp_select_best_libcell ker-
nel to perform a reduction operation to select the libcell with the smallest de-
lay for each driver pin. Unlike the select_best_libcell kernel in block-level
sizing, the warp_select_best_libcell kernel leverages highly optimized warp-
level primitives, enabling fine-grained synchronization and efficient communica-
tion among threads within the same warp for faster reduction. The details of
warp_select_best_libcell kernel are shown in Algorithm 3.

In Algorithm 3, each driver pin is processed by a single warp. The variable
min_violation, initialized to infinity, keeps track of the smallest delay found
by each thread (tid) within a warp (wid) (line 4). The libcells_by_driver_pin
array is a 2D array that stores all libcells by driver pin, allowing efficient ac-
cess during processing (line 5). To process all libcells, threads within the same
warp iterate through them in rounds of 32 (line 6), updating min_violation
and min_id, which track the smallest delay and its corresponding libcell index
(lines 7–11). After comparing all delays, a warp-level reduction is performed us-
ing the CUDA warp-level primitives __reduce_min_sync to efficiently identify
and store the smallest delay among threads in the warp as w_min (line 12). The
algorithm then uses another __reduce_min_sync operation to identify the in-
dex of the libcell with the smallest delay (w_min_index) for the assigned driver
pin (lines 13–14). Finally, the thread corresponding to w_min_index stores the
selected libcell in the best_libcell array as the final selection (line 15). By sharing
data among threads within the same warp, warp-level reduction achieves faster
synchronization and lower communication overhead compared to the block-level
reduction.

Algorithm 3 warp_select_best_libcell
1: #blocks = ⌈driver_pins.length()× 32/1024⌉; #threads = 1024
2: /* One warp handles a driver pin */
3: parallel for each warp in blocks wid {
4: min_violation = ∞; tid = GPU thread’s index in warp
5: len = libcells_by_driver_pin[wid].length()
6: rounds = ⌈libcells_by_driver_pin[wid].length()/32⌉
7: for each r ∈ {1...rounds}
8: libcell = libcells_by_driver_pin[wid][r × 32 + tid]
9: tmp ← time violation of libcell (r × 32 + tid) by driver pin

10: min_id = (min_violation > tmp) ? (r × 32 + tid) : (min_id)
11: min_violation = min(min_violation, tmp)
12: w_min = __reduce_min_sync(0xFFFFFFFF, min_violation)
13: min_index = (min_violation == w_min) ? min_id : len
14: w_min_index = __reduce_min_sync(0xFFFFFFFF, min_index)
15: best_libcell [wid] = libcells_by_driver_pin[wid][w_min_index]
16: }

Accelerating Gate Sizing using GPU 5

3 EXPERIMENTAL RESULTS

We implemented the CPU and GPU baselines in CUDA and C++ and compiled
it using nvcc v12.3 with -O3 and -std=c++20 enabled. All experiments ran on a
4.8 GHz 64-bit Linux machine with 32 Intel Core i5-13500 cores and an Nvidia
RTX A4000 GPU.

40 80 16
0

32
0

64
0

12
80

25
60

51
20

10
24

0
20

48
0

40
96

0
81

92
0

16
38

40

32
76

80

65
53

60
10−2

10−1

100

101

102

103

#driver pins (K)

R
un

tim
e

(s
ec

)

#driver pins vs Runtime (sec)

CPU - 16-core
GPU - Block-level
GPU - Warp-level

Fig. 2: Comparison of CPU and GPU runtime across different numbers of driver
pins.

Figure 2 compares the runtime performance of CPU and GPU implemen-
tations across different numbers of driver pins. The figure presents results for
three configurations: a 16-core CPU baseline, a GPU implementation with the
block-level sizing algorithm, and an optimized GPU implementation with the
warp-level sizing algorithm. The reported GPU runtime includes data transfer
time between the CPU and GPU. In this experiment, we randomly generated
driver pins and their associated libcells with varying counts and sizing param-
eters to have a simple and direct comparison against the CPU-based baseline.
The number of driver pins is shown in the figure, while the number of libcells
per driver pin follows distribution pattern: 70% of driver pins have between 1
and 32 libcells, while 30% have between 33 and 41 libcells.

The results show that the GPU-based implementations consistently outper-
form the 16-core CPU baseline when the number of driver pins exceeds 80K,
with block-level sizing achieving an average 16.97× speedup and warp-level siz-
ing achieving an average 18.17× speedup. As the number of driver pins increases,
the speedup of GPU baselines grows larger, demonstrating their scalability and
efficiency for handling larger workloads. For instance, at 655M driver pins, block-
level sizing achieves a 34.75× speedup, while warp-level sizing achieves a 38.13×
speedup over the CPU baseline. Additionally, warp-level optimization further im-

6 Y.-C. et al.

proves GPU performance, achieving an average 4.77% speedup over the block-
level sizing, with the highest improvement of 8.88% observed at 655M driver
pins.

4 Conclusion

In this paper, we introduced a GPU-accelerated algorithm to speed up the libcell
selection routine in gate sizing, a critical step in VLSI design optimization. Our
proposed algorithm addresses the scalability bottlenecks of multi-core CPUs by
leveraging both block-level and warp-level GPU parallelism to independently
evaluate and select the optimal libcell for each gate. Compared to a 16-core
CPU baseline, our approach achieves up to 38× speedup, with warp-level sizing
further improving performance by an additional 4.77% on average.

Acknowledgment

This project is supported by NSF grants 2235276, 2349144, 2349143, 2349582,
and 2349141.

© The Author(s) 2025. This is the author’s accepted version of the paper accepted for
publication in Euro-Par 2025 PhD Symposium (Springer LNCS Companion Proceed-
ings). The final authenticated version will be available online at SpringerLink.

References

1. Cheng, C.K., Holtz, C., Kahng, A.B., Lin, B., Mallappa, U.: Dagsizer: A directed
graph convolutional network approach to discrete gate sizing of vlsi graphs. ACM
Transactions on Design Automation of Electronic Systems 28(4), 1–31 (2023)

2. Coudert, O., Haddad, R., Manne, S.: New algorithms for gate sizing: A comparative
study. In: Proceedings of the 33rd annual Design Automation Conference. pp. 734–
739 (1996)

3. Flach, G., Reimann, T., Posser, G., Johann, M., Reis, R.: Effective method for
simultaneous gate sizing and v th assignment using lagrangian relaxation. IEEE
transactions on computer-aided design of integrated circuits and systems 33(4),
546–557 (2014)

4. Hu, S., Ketkar, M., Hu, J.: Gate sizing for cell library-based designs. In: Proceedings
of the 44th annual Design Automation Conference. pp. 847–852 (2007)

5. Lin, Y., Grover, V.: Using cuda warp-level primitives (August 2017),
https://developer.nvidia.com/blog/using-cuda-warp-level-primitives/, accessed:
2025-01-28

6. Mangiras, D., Chinnery, D., Dimitrakopoulos, G.: Task-based parallel programming
for gate sizing. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 42(4), 1309–1322 (2022)

7. Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming with
cuda: Is cuda the parallel programming model that application developers have been
waiting for? Queue 6(2), 40–53 (2008)

Accelerating Gate Sizing using GPU 7

8. Sharma, A., Chinnery, D., Bhardwaj, S., Chu, C.: Fast lagrangian relaxation based
gate sizing using multi-threading. In: 2015 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). pp. 426–433. IEEE (2015)

9. Shi, B., Zhang, Y., Srivastava, A.: Accelerating gate sizing using graphics processing
units. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 31(1), 160–164 (2011)

